Gromov ’ s measure equivalence and rigidity of higher rank lattices
نویسندگان
چکیده
In this paper the notion of Measure Equivalence (ME) of countable groups is studied. ME was introduced by Gromov as a measure-theoretic analog of quasi-isometries. All lattices in the same locally compact group are Measure Equivalent; this is one of the motivations for this notion. The main result of this paper is ME rigidity of higher rank lattices: any countable group which is ME to a lattice in a simple Lie group G of higher rank, is commensurable to a lattice in G.
منابع مشابه
Integrable measure equivalence and rigidity of hyperbolic lattices
We study rigidity properties of lattices in Isom(H) SOn,1(R), n ≥ 3, and of surface groups in Isom(H2) SL2(R) in the context of integrable measure equivalence. The results for lattices in Isom(H), n ≥ 3, are generalizations of Mostow rigidity; they include a cocycle version of strong rigidity and an integrable measure equivalence classification. Despite the lack of Mostow rigidity for n = 2 we ...
متن کاملTrees and Discrete Subgroups of Lie Groups over Local Fields
Let K be a locally compact field and G a simple AT-group, G = G(K). A discrete subgroup T of G is called a lattice if G/F carries a finite G-invariant measure. It is a uniform (or cocompact) lattice if G/T is compact and nonuniform otherwise. When the jRf-rank of G is greater than one, Margulis [Ma, Z] proved that T is arithmetic, establishing the conjecture of Selberg and PiatetskiShapiro. Thi...
متن کاملN ov 2 00 5 Limit groups , positive - genus towers and measure equivalence
An ω-residually free tower is positive-genus if all surfaces used in its construction are of positive genus. We prove that every limit group is virtually a subgroup of a positive-genus ω-residually free tower. By combining this with results of Gaboriau, we prove that elementarily free groups are measure equivalent to free groups. Measure equivalence was introduced by M. Gromov in [8] as a measu...
متن کاملar X iv : 0 71 0 . 42 07 v 1 [ m at h . G R ] 2 3 O ct 2 00 7 BOUNDED COHOMOLOGY AND L 2 - INVARIANTS
We study the subgroup structure of discrete groups which share cohomological properties which resemble non-negative curvature. Examples include all Gromov hyperbolic groups. A subgroup H ⊂ G is called s-normal, if H∩H is infinite for all g ∈ G. We provide strong restrictions on the possible s-normal subgroups of a Gromov hyperbolic group, or more generally a ’negatively curved’ group. Another r...
متن کاملQuasi-isometric Rigidity of Higher Rank S-arithmetic Lattices
We show that S-arithmetic lattices in semisimple Lie groups with no rank one factors are quasi-isometrically rigid.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999